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(block 20 continued)

is stable. We can also choose the compliance center and the stiffness matrix of the
grasp, and so choose the compliant behavior of the grasped object about its equilibrium.
the planning and execution of grasps and assembly operations become easier and less
sensitive to errors.
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Abstract: This paper addresses the problem of synthesizing stable grasps on
arbitrary planar polygons. Each finger is a virtual spring whose stiffness and com-
pression can be programmed. The contacts between the finger tips and the object
are point contacts without friction.
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Jrh jrovethat all force-closure grasps can be made stable, and it costs 0(n) time

to synthesize a set of n virtual springs such that a given force-closure grasp is stable.
We can also choose the compliance center and the stiffness matrix or the grasp, and
so choose the compliant behavior of the grasped object about its equilibrium. The
planning and execution of grasps and assembly operations become easier and less
sensitive to errors. / ; , / ,
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I Introduction

1 Introduction

1.1 Models For Grasp, Fingers, and Contacts.

This paper addresses the problem of synthesizing stable grasps in the plane. The
grasped object can be any arbitrary polygon. The grasp is modeled ,as a set of
grasp points on the edges of the object. Input to the system will be this set of
grasp points and the corresponding set of contacting edges. Ouput will be a set
of spring constants and compressions at the fingers, such that the grasp is stable.
The behavior of the grasped object about its equilibrium is described by a diagonal
stiffness matrix.

Each finger is a virtual spring with programmable stiffness and compression.
The stiffness at a finger tip conies from the stiffnesses at its joint. The stiffness at a
finger joint in turn comes from the fixed stiffness of the tendon and motor, and from
the variable stiffness of the control loop. We assume that each joint has stiffness
control as its high level control loop.

The contacts between the finger tips and the object are point contacts without
friction. So, each finger tip can only exert a force normal to its edge of contact.
Each finger is therefore modeled as a linear spring normal to the edge of contact.

We assume that the weight of the object is small compared to the contact forces,
and so is neglected. A more realistic scenario is a grasp on a polygonal cross section
of a cylinder. The weight is perpendicular to the grasping plane, and is balanced
by the frictional forces at the rolling fingers. The fingers roll without friction in the
grasping plane. Figure 1.

1.2 Main Results

e We prove that all force-closure grasps can be made stable (Corollary 5). The
algorithm for constructing a stable grasp is both simple and efficient (Algo-
rithm 1). It costs O(n) time to synthesize a set of n virtual springs such that
a given force-closure grasp is stable (Complexity 1).

* We can choose the compliance center and the stiffness matrix of the grasp,
or in other words, choose the behavior of the grasped object about its stable
equilibrium. The object behaves as though it is attached to two linear springs
and one angular spring at its compliance center (Figure 4). The grasp is

robust to disturbances. If the object is accidentally displaced, there will be
restoring wrenches that will pull it back to its stable equilibrium. All this
is done automatically, fast, and without any extra effort from planning or
execution.

e The planning and execution of grasps are greatly simplified, and a lot less
sensit.ive ti e)(rrors, l ccImse of' the exik1ence ol" sloI)le cfigiaL raions. Knowing
that a stable grasp exists on a set f edges, we can just grasp near the desired
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Figure 1: An example or planar grasps.

grasp points and let the fingers adjust themselves on these edges until they
end up on the planned grasp points. Any fast oscillation will be damped by
the mechanical damping of the fingers and some nominal damping in the joint
control loops. We will only see the fingers slide and comply to the edges until
the desired grasp is achieved. This execution is fast because the fingers can
be servoed in parallel, independently from each other.

e The planning and execution of assembly operations is also greatly simplified
and a lot less sensitive to errors, because we can choose the center of com-
pliance and the stiffness matrix. Instead of planning for explicit force and
trajectory, we plan for a compliant behavior of the parts respective to each
other. For example, to do peg and hole insertion, we need to stably grasp the
peg, put the compliance center at the mouth of the hole, and push the peg
into the hole. ' A dextrous hand with active compliance is therefore much
more flexible than the RCC 2 gripper, (Whitney 1982).

'Tlis paper shows how to control the pwition of the complimce center in the horizontal plane

)erpelndicular to the axis of the hol,. To control the posNition of time compliance center in the
vertical platmc containinig the axis of the hole, we need point contacts with friction, see (Nguyen
lose).

1'1"n, Tlemo ,ioi Cuter of (o;mplimi'e wri.st i. a device with pamsivv co,'iliat ii which wits thme ceniter
of 9-01i1Jqhd ie atid OW tip of' tile peg. TIi... l'i ;uI ffli cihitr c ti 'omipli ice are fixed relative

to tle peg.
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%/ 1.3 A Grasp Planner

Figure 1 shows a planar grasp that, is both force-closure and stable. Force-closure
is defined as follows:

Definition 1 A grasp G is force-closure if and only if we can exert, through the set
of grasp points, arbitrary force and moment on the object. Equivalently, any motion
of the object is resisted by a contact force, that is the object cannot break contact
with the finger tips without some non-zero external work.

Mathematically, let wi = (fi, fi,, mi-)' be the planar wrench that can be ex-
erted through point contact P. Grasp G is force-closure if and only if the set of n
wrenches {w,... ,Wn} has rank equal to three and there exists a set of non-negative

coefficients {a 1 ,... ,,,} such that:

i oWi = 0
i 1

A Grasp Planner can generate a stable grasp G on a set of edges {el,... ,en} as
follows:

" Synthesize a set of grasp points {/ ",..., P) for which the grasp G at these
grasp points is force-closure.

Better yet we find the optimal set of grasps with independent regions of con-
tact {r,...,r,) for the given n edges. The regions are independent from
each other, in the sense that as long as we pick grasp point Pi in region ri the
resulting grasp G = {P,,..., P} is always force-closure. The set is optimal
in the sense that the smallest region has the largest length for the given set of
edges, so this length gives a lower bound on the accuracy in finger positioning,
(Nguyen 1985). We then pick the mid point of the region ri as the optimal
grasp point Pi.

" Synthesize a corresponding set of virtual springs, such that grasp G is stable.
Each finger Fi behaves as a virtual spring with linear stiffness k, and com-
pression aio,. We can also construct the set of n virtual springs such that the
grasp has sonic desired compliance center and stiffness matrix.

1.4 Other Related Works

Related works can be grouped as follows:

e Force-closure grasps - Force-closure and total freedom capture the main con-

straint between the fingers and the grasped object. Force-closure is analyzed
in details in (Ohwovoriole 1980, 1984). Efficient algorithms for construct-
ing force-closure grasps are presented in (Nguyen 1985, 1986). Related to
force-closure are the notion of degree of freedoni (Bottema & lolh 1979),
(Illu t 1978), and the solutioti of systeias of' liuear iuiequations (Il1111t &
Tucker 1956).

4..-1.. .,pq



4 'he Synthesis of Stable Grasps In the P'lane

" Equilibriun grasps -- There are many works on analyzing the equilibrium
of forces in a grasp with different types of contact (Salisbury 1982), with
flexible contacts (Cutkosky 1984), or with friction (Abel, llolzmann & Mc-

Carthy 1985). Finding a good grasp is often formalized as a search of the
space of all grasps with some goal function, such as optimum for internal
forces (Kerr 1984), or security of grasp (Jameson 1985).

" Stable grasps - A stable prehension of a planar hand on a polygon can be
found by centering the hand on the center of mass, and check for grasps that
are stable with respect to rotation, then stable with respect to translation

(]lanafusa & Asada 1977), (Asada 1979). (Baker, Fortune & Grosse 1985)
prove that stable grasps on a convex polygon exist, and present efficient algo-
rithnms that require no incremental search.

" Compliant grasps -- - We can have active stiffness control of the hands and the
grasped object as in (Salisbury & Craig 1981), (Salisbury 1984, 1982), or build
in some proximity damping as in (Jacobsen, Wood, Kniitti & Biggers 1983)
Grasps can be achieved easily with active compliance and slipping at the
fingers as in (Fearing 1984), or by exploiting the passive compliance of the
object with the fingers and the environment as in (Mason 1982). Grasping a
peg and inserting it into a hole is currently done best with a passive compliance
wrist known as the Remote Center of Compliance (Whitney 1982).

2 Planar Grasps With Virtual Springs

Each finger is modelled as a virtual spring with arbitrary finite stiffness. The spring
behavior can be implemented by a control loop which enforces:

f = K(x. - x) (1)

where f is the force applied by the finger tip on the grasped object, K is the stiffness
matrix of the finger at its tip, and x (resp. x.) is the actual (resp. desired) position
of the finger tip.

The contacts between the finger tips and the grasped object are point contacts
without friction. Tihe finger tips slide on the edges of grasped object when this later
is moved away from its equilibrium. The springs will compress or stretch depending
on the configuration of the grasp, and depending on the displacement of the object.

(ivn I that each finger of grasp G behaves like a spring, we wouldh like to derive 1)
III ;ilHylical coiditiotis for which G is iii tabv c equili briim u, ad 2) the compliant

behavior of grasp G about this stable equilibrium.

............ ,h ......



2 Planar Grasps With Virtual Springs 5
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Figure 2: Contact between the finger and the grasped object.

CID 2.1 Potential Function of a Grasp

Figure 2 shows a finger Fi with linear stiffness ki, contacting without friction on an
edge c. The compression of finger F when the grasped object is moved away by
(x, y, 0) from its equilibrium is:

O4. u(x, Y, ) = 00 + di(1-cos0) + uisinO + xcos (x+0) + y sin (a +0) (2)(x , ) : ° +Cos

where a, and pi are respectively the orientation and moment of the line of action of
the spring k, about the point of rotation 0, di is the algebraic distance from 0 to
edge ei. The spring ki has direction the normal of the edge ei, and has compression
Oio when grasp G is in equilibrium.

Assuming that the weight is perpendicular to the grasping plane of the object,
or that the effect of gravity is negligible, the potential function of grasp G is equal

Z to the sum of the potentials of all its springs:

=n
U (,Y )1k ?(x, y,,)(3

iI

where k,, ai(x,y,O) are respectively the spring constant and contpression at finger
l', and n is the number of fingers in grasp G.

"!C

L16- .. 4 - %44



Ti 'lTe Synthcsis of Stable Gr;Lsps In the Plance

2.2 Grasp Equilibrium

The grasp G is in equilibrium if and only if the sum of all forces and moments in
the grasping plane or C is zero. This is equivalent to the first partial derivatives of
the potential function IJ(X,y,O) being all zero. Formally:

Theorem 1 A grasp G composed of n virtual springs is in equilibrium if and only

if:

U ( ) kioi,, cos a1 = 0

( E,!. k)i,, sin ai = 0 (4)

r-11 (I,.0) k 1  = 0

where the spring constants ki, and the compressions at, are all positive. aj, and ji
are respectively the orientation and the moment of the line of action of spring ki.
The spring ki is oriented along the normal of edge e1.

The above system of equations can be rewriten in a force-closure form:

E fi U, = 0, fo 0 (5)

where f,, 2= kiojo, and u I = (cos cti, sin ai, p) t is a unit contact-wrench representing
the point contact at finger Fi. Force equilibrium exists if and only if there exists a

set of positive contact forces 3 {flo,..., fo} such that equation (5) holds, or if the
grasp is force-closure. The force-closure condition is sufficient but not necessary for
the existence of force equilibrium. For example, a grasp on two parallel edges can

have force equilibrium with two opposite wrenches instead of the minimum of four
wrenches required for planar force-closure, (Nguyen 1985).

Corollary 1 If grasp G is force-closure, then we can always find a set of positive
contact forces at the fingers, such that G is, in equilibrium.

2.3 Grasp Stability

The grasp G is stable if and only if the potential function U(z, y, 0) of G reaches
a local minimum. We can write the Taylor's expansion of the potential function

U(x, y, O) about the equilibrium as follows:

(z.,y, ,)o + H I(o,0,()) x + ... (6)
i

a'i,, r teit.ic't force is priiliv,, (resi,. w-gatiwe) it tO linger is jtsliiitg i ito (res). piffiiig mit (if)i Ihl' 01 j4,'t.



2 Plaaiar Grasps With VirtualSprings 7

where x - (x, y, O)'. So, a niultivariable function reaches a local miniinum if I) the

first partial derivatives are all zero, and 2) the hlessian matrix of the second partial

derivatives is positive definite. lormally:

Theorem 2 A grasp G composed of n virtual springs is in stable equilibrium if both

of the following hold:

* The gradient V UI(ooo) is zero.

" The Hessian matrix I(oj(~o) of the potential function U(x,y,O) is positive

definite.

0211 a fl
2

[1 a)2(I

iPu i ri; l i.OO

HO ( 4X at 0) (0,0,0)
i)211 al; a 0211

-)ira O -)0 Zksna -kpsa ) (7)
ki cosk2 oti Ekisinaicosai Ekiti cosc i

i : E ki sin ai cos oai E ki Ez oi kilt i sin ai

r, kili cos a i  E ki/,i sin ai E ki (2i4 + uidi)

U(x, y, 0) is the potential function of grasp G, where (x, y, 0) is the displacement of

the object from its equilibrium configuration.

The first clause is a restatement of force equilibrium, Equation (4). For the
second clause, the Hessian matrix Ho is positive definite if and only if all its principal
minors are strictly greater than zero. A principal minor of a matrix M is the
determinant of an upper left submatrix of M. (Strang 1976).

detH = E ki cos 2 ai > 0

Z kE cos 2 , ksin ai cos oia
dH ki sin ai cos ai E ki sin2 0

1,

detI 3 = detHo > 0

The first two principal minors are always strictly positive. The third principal minor

does not lead to a simple equation in terms the virtual springs. However, it has two
interesting special cases for which the Hessian matrix Ho is diagonalizable. (In the
next section, we'll see that the stiffness matrix of the grasp about the equilibrium is
equal to the Hessian matrix. So the stiffness matrix is also diagonalizabhc, i.e. the
grasped object behaves as though it is connected with three independent springs,

Figure 4.)

I. The coitipliance center, or poiw. of rolation o of wh plati;r oject, is at the

coninion intersection of the lines of action of the springs, IF'igure 3. This is
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2)  Figure 3: A stable grasp on a convex polygon.

equivalent to all the moments pi equal to zero. The third principal minor
reduces to:

det H3  = (det I12) E k, oio di L

and is strictly positive if and only if E kio10d, is positive. This sum is invariant
with the origin, and depends only on the contacting edges and the forces on
these edges. A special case, reported in (Baker et al. 1984), is when the fingers
contact without friction at places where the maximal inscribed circle becomes
tangent to the edges of the convex polygon. Note that all the distances di
are greater than zero, so the third principal minor is greater than zero. The
grasp is stable respective to rotation and translation. However this grasp is
not force-closure since we cannot exert any torque about 0.

. 2. The compliance center, or point of rotation 0 of the object, is such that the

weighted sum of the virtual springs is zero. The weights in this sum are the
moments of the lines of action of the springs about this compliance center.

-, Specifically:
'I

pi kI = 0

The third principal minor becomes:
det H3 = (det 112) E ki (/ + aiodi)

and is strictly positive if and only if:

Sk. (M + (7d,) > o

'4

.......- ." -' JI .



2 Planar Grasps With Virtual Springs 9

The two special cases give only sufficient conditions for the existence of stable

grasps. Note that the first special case is included in the second one. The next
section will explore in detail the two suflicient conditions of the second special case.
We'll prove that a force-closure grasp can always be iade stable, and we'll show a
simple and direct algorithm for constructing stable grasps. For the moment, let's
summarize the sufficient conditions for stability in the following corollary:

Corollary 2 A grasp G composed of n virtual springs is in stable equilibrium if all
of the following hold:

" Grasp G is in equilibrium, i.e.:

Zw1= 0 (8)
i 1

where wi - ai,, (cos ai, sin a ,, pi) is the contact wrench at finger F.

" The center of compliance and the virtual springs are such that:

pi ki = 0 (9)
i- I

AOL where k1 = ki (cos ai, sin ai)t

" The set of spring constants and the set of spring compressions are such that:

n ki (u? + aio'di) > 0 (10)

where k, and ajo are respectively the stiffness and the compression at equilib-
rium; ai, pi are the orientation and the moment of the line of action of spring
k, about the compliance center 0.

2.4 Compliance About Stable Equilibrium

The restoring wrench applied on the grasped object is equal to the negative of the
gradient of U(x, y,O). Assuming that the disturbances of the grasped object from
its stable equilibrium are small, we deduce from the Taylor's expansion of U(x, y, 0)
that:

w = -VU(z, Y,0)

- 10
The coiiipliance behavior of the grasped object about its stable equilibrium is de-
scribed by a stifrness tatrix which is equal to the liessiai matrix.
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The above approxiumation holds for displaceient in orientation 0 less than 10

degrecs, and for linear displaceiient in the xy-l)lane less than oiie tenth of the size
of the grasped object. The coil)iancC of the grasp is more sensitive to errors in
orientation than location. The reason is that the stilfness normal to the edge of

contact varies drastically as we rotate the object close to .90 degrees. We iight no
longer have restoring wrench in the correct, direction, and the grasp might no longer
be force-closure. If there is no error in orientation, then the restoring force opposite
to a linear displacement always exists regardless of the unount of displacement.
The restoring force is nothing more than the non-null sum of the contact forces
generated by the springs.

From the previous section, we have seen that if the compliance center is chosen
such that equation (9) holds, then the Hessian matrix has a diagonal form. This
ieans that the stiffness matrix also has a diagonal form:

K =(11.0.0)

= E ki cos 2 i E ki sin ai cos ai 0 1 (12)

E ki sin ai cos ai E k ,sin 2 ai 0

o 0 E + aoid))

Note that the angular displacement is decoupled from the two linear displace-
ments of the object. The grasped object behaves as though there axe three inde-

pendent springs attached to it. Figure 4.

9 An angular spring with stiffness ko, and axis perpendicular to the grasping
plane and going through the center of compliance 0 of the object.

ko = i (1 + o1od,) (13)

9 Two linear springs with respective stiffness k., kb, along two perpendicular
axes in the grasping plane of the object. The stiffnesses and directions of
these two linear springs are respectively the eigenvalues and the cigenvectors
of the following 2 x 2 symmetric matrix:

K.k, cos' ai E :i i a osa ) (14)Yki sill cii cos Oai E ki sin 2 C1,

The two eigenvalues k,,, kh are both greater titan zero because K, is positive
d(efllite. The two coresg)oIlding cigenvectors are perpendicular because KI is
symmetric. We have a linear stillness field in the shape of an ellipse.

1~



3 Constr ction of Stable Grasps II

k4 .

ke k ,

Figure 4: Compliance of the grasped object about its stable equilibrium.

The matrix Ky is nothing more than the sum of the individual stiffness matrices
of the fingers expressed in the global frame of the hand:

(cosai sin a, cos a
K. y= I k sincosa, sin 2 a

= R -1rot(a,) (o 0) Rot (-ai)

where Rot(a) is the rotation from the base reference frame to the local frame at
the finger tip.

The linear stiffness matrices add up to K... The angular effects of these virtual
springs also add up into the first sum of the angular stiffness ke:

n 
+ n

i=1 i=1

This angular effect depends on the moments of the lines of action of the springs
about the center of rotation 0. The second sum depends on the configuration of
the fingers, whether the grasp is an outside-in or inside-out grasp (see Section 3.2).
This sum describes the effect of the gras9p configuration in resisting rotation of the
grispcd object about 0.
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3 Construction of Stable Grasps

In the previous section, we have derived the analytical Conditions for stable equi-
librium. In this section, we will 1) explore tie physical meanings of the analytical
conditions (9) and (10), 2) prove that a force-closure grasp can always be made
stable, and 3) give a simple algorithm for constructing a stable grasp assuming that
it is force-closure.

3.1 Center of Compliance

From Section 2.4, we saw that the stiffness matrix is diagonalizable with indepen-
dent linear and angular springs if and only if equation (9) holds. Let's rewrite
equation (9) to imake explicit the region in which the compliance center of the grasp
inust be:

yj pk, = _piI (sign(i) ki) = 0

When can we find a set of positive spring constants {ki,...,k,} such that the
above equation holds? The equation looks very much like the force-closure condi-
tion in the plane, except that we deal with only force directions. It can always be
satisfied if the vectors {sign (pui) k,} span the space of all directions in the plane
(Nguyen 1985). The sign of the moment ui depends on the position of the compli-
ance center with respect to the line of action of the virtual springs. This means that 'p
the compliance center must be inside some polygon delimited by the lines of action
of the virtual springs. This polygon is called the compliance polygon of the grasp.
Figure 5 shows the compliance polygon 0(, within which the compliance center of
grasp G must be.

We now prove that if the grasp is force-closure then the compliance polygon
always exists, and so equation (9) can be satisfied. Note that if grasp G is force-

closure then the two cones generated by (-k 1 , -k 2 ) and (-k3, -k 4 ) counter-overlap
in a non-zero convex polygon CGG, Figure 6. If we pick the compliance center 0 inside
this convex polygon, then the springs k, and k3 , resp. k2 and k4, have negative,
resp. positive, moments about 0. One can check that there exists a positive linear
combination of -k 1 ,k2 , -k 3 , k 4 such that one walks counter-clock-wise along the
boundary of the convex polygon bounded by the lines of action of the springs.
Equation (9) holds, aid so the compliance polygon is always non null for force-
closure grasps. The following corollary formalizes the above results:

Corollary 3 If grasp G is force-closure then:

e The compliance polygon of grasp G, denoted 1)(,, is non empty. The compli-
ance polygon fl(: has boundary supports the lines of action of the springs. fla
t.i the ,Ldmain ,f the reference point 0 for which the vectors {sign(s,)kl) span
the space of all directions in the plane.
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ksk4

Figure 5: Compliance polygon of a grasp.

" The convex polygon Cc bounded by the lines of action of the springs is included
in the compliance polygon flg.

" If we pick the compliance center 0 of grasp G within the polygon flo, then
there always exists a set of spring constants k1,... , k,, such that the stiffness
matrix of grasp G is diagonalizable, or such that equation (9) holds.

We prefer to pick the compliance center within the convex polygon CG so that the
spring constants are more or less equal. Within this polygon, the desired location
of the compliance center 0 in the global frame depends on the task at hand. For
example, to insert a peg into a hole, we ideally want to put the center of compliance
at the mouth of the hole (Whitney 1982). Note that grasping the peg with force-
closure requires to put fingers on all four sides of the peg, which is unfeasible!
Luckily we can have force-closure with two point contacts with friction, and so we
can grasp at the top of the peg and at the same time have a compliance center at
the mouth of the hole, 4 (Nguyen 1986). We achieve the same effect as the RCC
gripper. But, with an active compliance hand, we have more flexibility in choosing
the compliance center and the stiffness matrix of the grasp. We can achieve both a
stable grasp and a desired compliant behavior of the grasped object during assembly.

'The analysi.s of st ble Igraslm with 2 poit cotacts with fri,'io is .i,,ilar tot the anIalysis give,, in
I. his paIpi ,r. 'lh for of Olw .6li lf .+I ii rii A alrix is 1.114' me exc'p~t d.lw eXpressio of t k h lIu t millnuls
SigH i11144'441 OIf iL 11111 Sighm. ke ~ ki (it? - ,di
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Figure 6: Compliance polygon always exists for force-closure grasps.

3.2 Outside-In / Inside-Out Grasps

We have seen in Section 2.4 that the left hand side of inequation (10) is nothing
more than the angular stiffness ko of grasp G when the object is slightly rotated
from its stable orientation. To have restoring couples in the correct direction, this
stiffness must be strictly positive. The stiffness ke can be rewritten as:

ko = E!'I ki( A + '.fd,.)

E! yiJA? + Z!', f,0.di

where fi,, = kacri is the contact force on edge ei when grasp G is in equilibrium.
The first sum in the above expression depends on the placement of the compliance
center inside the compliance polygon flu. This sum is positive and increases as the

"I compliance center moves to the boundary of O,. The second sum is invariant with
the location of the compliance center. It depends only on the contact forces and
the relative configuration of the contacting edges.

How can we have positive angular stiffness ko? First, if the distances d, are
all strictly positive, then the angular stiffness ko is also strictly positive. This
observation leads to a classification of grasp configurations into three categories
defined as follows:

" A grasp G is called an outside-in grasp if and only if the closed half planes of
the contacting edges of G intersect.

" A grasp G is called an inside-out grsp if and only if the open half planes of
the contacting edges of G intersect.
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/ 0

Figure 7: Outside-in /inside-out /mixed grasps.

e A grasp G is called a mixed grasp if and only if neither the closed half planes
nor the openi half planes intersect.

Grasps on the boundary of convex objects are examples of outside-in grasps.
Grasps on the boundary of convex holes are examples of inside-out grasps. If a
grasp G has exactly the minimum number of contacts required for force-closure,
then grasp G is either outside-in or inside-out grasp. Mixed grasps come up only
when there are more contacts than the minimum of two for point contacts with
friction, and four for point contacts without friction, Figure 7.

From the expression of the angular stiffness ke, we see that it is always strictly
positive for outside-in grasps. We can prove this by noting that the second sum
is invariant to the position of the origin, so we can pick the origin to be in the
intersection of the closed half planes, and have all the distances d, positive.

The angular stiffness ke may be negative for inside-out, and mixed grasps. Fig-
ure 7 shows two grasps on a same triangular ring. One would suspect that the
two grasps on the triangular ring have the same behavior. But surprisingly, one
finds that the outside-in grasp is stable, while the inside-out grasp is in an unstable
equilibrium, corresponding to a local maximum of the potential function U(z, y, 0),
or a negative stiffness ke.

Luckily, with force-closure grasps, we have another positive term in the ex-
pression of ko, which depends on the moments of the springs about the center of
compliance. By scaling up the set of spring constants while keeping constant the
set of contact forces we can make the first sum greater than the second sum, and

S 'il i I I -
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have kt0 strictly positive. This it possible only if the moments , are not all zero,
which means that the lines of action of the virtual springs do not all pass through
the compliance center. A sufficient condition is again the force-closure condition. s
The following corollary formalizes the above interesting results:

Corollary 4 The angular stiffness ko of grasp G can be made strictly positive if
either of the following is true:

* Grasp G is an outside-in grasp.

* The compliance center of G is not at the common intersection of the lines of

action of the virtual springs.

e Grasp G is force closure.

3.3 Making a Force-Closure Grasp Stable

If grasp G is force-closure, then:

" We can always synthesize a set of contact forces {f, ... , f,o} at the finger
tips such that grasp G has force equilibrium (Corollary 1).

" We can choose the compliance center and the corresponding set of spring
constants {ki,..., k,}, such that the stiffness matrix K; of the grasp is diag-
onalizable (Corollary 3).

" We can make the angular stiffness ko strictly positive, and so have the stiffness
matrix Kg positive definite (Corollary 4).

From Corollary 2, we conclude that we can always make a force-closure grasp
stable, and this is the culminating corollary of this paper.

Corollary 5 Let G be a planar grasp with n fingers, each is a virtual spring with

arbitrary finite stiffness ki and compression aoi. If grasp G is force-closure then we
can always synthesize a compliance center 0 and a set of n virtual springs such that

both of the following hold:

* The grasp configuration G is in a stable equilibrium.

e The compliance behavior of the grasped object about its compliance center 0 is
described by three orthogonal springs: two linear springs in the grasping plane
of the object, and one angular spring about compliance center 0.

IfI ' 14 i u.4 . 'tiOu Of tlhe virtla Ilrhiug4 ll l (.,r:'vct att a criltlUoll poitlI, then we caniuuot gener."te

( retple..q(, so li4' gr. Jp is ntot lorc-c Iturv. &'onvvern.ly, I lie limi.$ of' ac tiont of the virtual spirilngs4 ,f a

i4rc4'-clhe(mrc grap tIV('r all initersrt ai t a CoIIIIJIIOi l)oitt.
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* Algorithm 1 A force-closure grasp G with n virtual springs can be made stable as
follows:

1. Find a set of contact forces {fi,,.. .,f,,,} such that force equilibrium is
achieved.

2. Pick a compliance center 0 from the compliance polygon fl(, or preferably
from the restricted convex polygon C(,.

S. Find a set of positive spring constants {k 1 ,... ,kn} such that:
n

,u = 0
i I

where ui and pzi are respectively the direction and moment of the virtual spring
ki about the compliance center 0.

4. Check that the angular stiffness ks of grasp G is strictly positive:

koki p + oiod,)

If not scale up the set of spring constants {k,,..., kn} keeping the set of contact
forces {f , ... , f,.,,} unchanged, until ko is greater than zero.

5. Find the virtual compressions at equilibrium:

1

6. Output the set of spring constants (ki,..., k,}, and the respective set of com-
pressions {alo,. .. v ,o} such that each finger F behaves as a virtual spring as
follows:

FF = it = 0 0 0 - r,

where F1 is the force applied by the finger tip F, on the grasped object, and
(ro, i) t is the displacement of the finger normal and tangential to the ith con-
tacting edge.

Complexity 1 A force-closure grasp G with n virtual springs can be made stable
in 0 (n) time. We assume that the n springs are sorted by their directions.

Proof:

e Step 1 is equivalent to solving a sy:;tei of three equations in n unknowns, and
so costs 0 (n) tiic. Equation (4). Similarly, step 3 costs 0 (n) time.
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I For step 2, the complete compliance polygon fR, is expensive to compute
because we have to check for force-direction closure on each of the 0 (n2 )

polygons from the plane partition induced by the n lines of action. Each

check will cost 0 (n) time, so the compliance polygon Q(, can be computed in
0 (n 3) timie.

However, we can use the convex polygon C(, bounded by the lines of action of
the virtual springs as a subset of f();, and pick the compliance polygon from
it. As noted earlier, we prefer to pick a compliance center within the convex
polygon C( so that the springs are more or less equal. The drawback is that

-C is smaller than Q(,. The convex polygon (, can be built in 0 (n) time
assuming that the edge normals are sorted. So, we can pick a compliance
center in 0 (n) time.

" The remaining steps 4, 5, and 6 all costs 0 (n) time each.

We conclude that a force-closure grasp can be made stable in 0 (n) time. *

3.4 Controlling a Compliant Grasp

Figure 8 shows the relationships between force and instantaneous displacement at
three different levels:

. At the grasped object, we want to choose a compliance center and a stiffness
matrix for grasp G such that the grasped object is stable and have restoring

wrenches as follows:
7 = KG dx

" From the desired compliance at the grasped object, we would like to deduce

the corresponding set of spring constants and compressions at the finger tips:

F = KFdx

" From the virtual springs at the finger tips, we then would like to derive the
stiffness at all of its joints:

T = Kid#

We can go further and derive the gains in the control loop of each joint, such
that the above joint compliance is enforced. Or we can assume that each joint

has a stiffness control loop with programmable stiffness.

From the kinematics of the linked fingers, we know that the force and veloc-
ity at each inger tip relate with its corresponding joint torques and velocities by
fhe ,l:Jacoiin J. Siiilarly, from the kinematics of the grasp, the velocity and ex-

lenr/ial/'hi'inal forces alicd at the grspeld oiJ*ect relale with ie velocities and
forces at the finger tips by the grasp matrix G, (Salisbury & Craig 1981). We get
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KG
dxW grasped object

G Kp Gt
ldI K,

IZI~~i pinger tips

1111 ~ "---- I~I~tfinger joints

joint control loops

Figure 8: Linked chains and their loop equations.

loops from which we can derive very easily the stiffness matrix of one level in terms
of the stiffness matrix of another level. For example, given the desired compliance
KG at the grasped object, we deduce:

K, = Gt Kg G

Ki = Jt Gt KG G J

This derivation is valid if the fingers of the hand and the grasped object are con-
nected in a linked chain. The linked-chain condition is equivalent to having fixed
grasp points, and being able to exert forces both ways through these grasp points.

Unfortunately, the grasp points are not fixed because there is no friction between
the finger tips and the edges of the object. So, the kinematics of the closed loop
chain change as the object is moved between the fingers. Also, there is no glue
between the finger tips and the object, so we can only push on the object, and not
pull this later. Finally, we can only press a linear spring normal to the edge of
contact because there is no tangential force due to no friction. This is why we have
to explicitly model the contacts and the fingers, then derive the potential function
and the compliance of the grasp.

This paper discusses in great detail the constraints in the top loop. Algorithm 1
shows how to synthesize a set of virtual springs at the finger tips to get a desired
compliance K/, of the grasped object. K/, is the Hessian matrix of the potential
function of the virtual springs ki about the equilibriuim. K',. is tite stifrness matrix of
the springs ki when expressed in the global reference frame. The stiffness ,nat-ices

MO &M ~ ~*l III)w
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at the object K' and at the fingers K. are related by the conservation of the
potcntial energy in the system, not by the fixed grasp configuration G.

From the kinematics of the fingers, we can deduce the stiffness at the finger
joints:

K = JK' J

and use this to control the joints. Each finger can be servoed independently, and
so the execution of a grasp can very fast. Any oscillation will hopefully be damped
by the mechanical damping in the fingers and some nominal damping in the joint
control loops.

Grasp execution is greatly simplified and a lot less sensitive to errors, because of
the existence of stable configurations. Knowing that a stable grasp exists on a set
of edges, we can just grasp near the desired stable grasp points and let the fingers
adjust themselves on these edges until they end up on the planned grasp points.
The grasp is also robust to disturbances. If the object is accidentally displaced,
there will be restoring wrenches that will pull it back to its stable equilibrium. All
this is done automatically, quickly, and without any extra effort from planning and
execution.

4 Conclusion and Extensions

The contact between the grasped object and the fingers of a dextrous hand is differ-
ent from traditional bar linkages, or open linked arms in that the links vary as the
object is moved between the fingers. We have shown how to analyze a compliant
grasp by explicitly modeling the contacts and the fingers. From the potential func-
tion of the grasp, we deduce the sufficient conditions for equilibrium and stability.
We presented an algorithm for synthesizing a set of virtual springs at the finger tips
to get a desired compliance of the grasped object. We also showed how to servo
a compliant grasp with stiffness control at the finger joints. The most important
result of this paper is: "All force-closure grasps can be made stable". The result is
proved for the case the fingers behave as virtual springs, and the contacts between
the finger tips and the object are frictionless.

The same line of analysis and synthesis can be worked out for other types of
grasps such as:

* Planar grasps with point contacts with friction.

* 3D grasps with point contacts with/without friction.

* 3) grasps with soft finger contacts.

G Graspls with more coinplex contacts, such as edge/plae contacts, plane/plane

co:ntacts, etc...
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Some of the extensions mentioned above are currently explored and will be reported
" - in (Nguyen 1986). Experiments also need to be done, and we'll use the Salisbury's

three-finger hand to experiment with compliant grasps.
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